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Abstract. The existence, stability and other dynamical properties of a new type of multi-dimensional (2D
or 3D) solitons supported by a transverse low-dimensional (1D or 2D, respectively) periodic potential in
the nonlinear Schrödinger equation with the self-defocusing cubic nonlinearity are studied. The equation
describes propagation of light in a medium with normal group-velocity dispersion (GVD). Strictly speaking,
solitons cannot exist in the model, as its spectrum does not support a true bandgap. Nevertheless, the
variational approximation (VA) and numerical computations reveal stable solutions that seem as completely
localized ones, an explanation to which is given. The solutions are of the gap-soliton type in the transverse
direction(s), in which the periodic potential acts in combination with the diffraction and self-defocusing
nonlinearity. Simultaneously, in the longitudinal (temporal) direction these are ordinary solitons, supported
by the balance of the normal GVD and defocusing nonlinearity. Stability of the solitons is predicted by
the VA, and corroborated by direct simulations.

PACS. 03.75.Kk Dynamic properties of condensates; collective and hydrodynamic excitations, superfluid
flow – 42.65.-k Nonlinear optics

1 Introduction

Recently, a variety of two- and three-dimensional (2D and
3D) solitons have been investigated in models based on
the nonlinear Schrödinger (NLS) or Gross-Pitaevskii (GP)
equations with a spatially periodic potential and cubic
nonlinearity, see a review [1]. The physical models of this
type emerge in the context of Bose-Einstein condensation
(BEC) [2–7], where the periodic potential is created as
an optical lattice (OL), i.e., interference pattern formed
by coherent beams illuminating the condensate, and in
nonlinear optics, where similar models apply to photonic
crystals [8]. A different but allied setting is provided by
a cylindrical OL (“Bessel lattice”), which can also sup-
port stable 2D [9] and 3D [10] solitons. Additionally, mod-
els combining a periodic lattice potential and saturable
nonlinearity give rise to 2D solitons, that were predicted
in reference [11] and observed in several experiments in
photorefractive media, including fundamental solitons [12]
and vortices [13]. It is also relevant to mention that ex-
perimental observation of spatiotemporal self-focusing of
light in silica waveguide arrays, in the region of anomalous
group-velocity dispersion (GVD), was reported in refer-
ence [14].

In models with the cubic nonlinearity, these solutions
were investigated in a quasi-analytical form, which com-
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bines the variational approximation (VA) [15] to predict
the shape of the solitons, and the Vakhitov-Kolokolov
(VK) criterion [16] to examine their stability. Final re-
sults were provided by numerical methods, relying upon
direct simulations of the underlying NLS/GP equations.
A conclusion obtained by means of these methods is that,
unlike their 1D counterparts, multi-dimensional solitons
in periodic potentials can exist only in a limited domain
of the (N, ε) plane, where N and ε are the norm of the so-
lution and strength of the OL potential, respectively. The
most essential limitation on the existence domain of 2D
solitons is that N cannot be too small (in a general form,
a minimum value of the norm, as a necessary condition
for the existence of 2D solitons supported by lattice po-
tentials, was discussed in Ref. [17]). Unlike it, ε may be
arbitrarily small, as even at ε = 0 the 2D NLS equation
has a commonly known weakly unstable solution in the
form of the Townes soliton, at a single value of the norm,
N = NT [18] (NT ≈ 11.7 for the NLS equation in the
usual 2D form, iut +∇2u+ |u|2u = 0). Small finite ε gives
rise to a narrow stability region,

0 < NT − N < (∆N)max ∼ ε (1)

for the 2D solitons [3]. Crossing the lower border of the ex-
istence domain (1) leads to disintegration of the localized
state into linear Bloch waves (radiation) [19].
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In the case of the attractive cubic nonlinearity (which
corresponds to BEC where atomic collisions are charac-
terized by a negative scattering length, while this is the
case of the normal, self-focusing Kerr effect), 2D and 3D
solitons can be stabilized not only by the potential lattice
whose dimension is equal to that of the ambient space,
but also by low-dimensional periodic potentials, whose di-
mension is smaller by one, i.e., 2D and 3D solitons can be
stabilized by a quasi-1D [5,6] or quasi-2D [5–7] OL, re-
spectively (in the former case, the qualitative estimate (1)
for the width of the stability region at small ε is cor-
rect too); however, 3D solitons cannot be stabilized by
a quasi-1D lattice potential [5,6] (this is possible if the
1D potential is applied in combination with the Feshbach-
resonance management, i.e., periodic reversal of the sign
of the nonlinearity coefficient [20], or in combination with
dispersion management, i.e., periodically alternating sign
of the local GVD coefficient [21]). Solitons can exist in
such settings because the attractive nonlinearity provides
for stable self-localization of the wave function in the free
direction (one in which the low-dimensional potential does
not act), essentially the same way as in the 1D NLS equa-
tion, and, simultaneously, the lattice stabilizes the soliton
in the other directions (in the 3D model with the quasi-
1D OL potential, the self-localization in the transverse 2D
subspace, where the potential does not act, is possible too,
but the resulting soliton is unstable, the same way as the
above-mentioned Townes soliton). An important aspect of
settings based on the low-dimensional OL potentials is mo-
bility of the solitons along the free direction, which opens
the way to study collisions between solitons and related
dynamical effects [6].

In the case of defocusing nonlinearity, which corre-
sponds to a positive scattering length in the BEC, or self-
defocusing nonlinearity in optics (negative Kerr effect),
the soliton cannot support itself in the free direction. Lo-
calization in that direction may be provided by an addi-
tional external confining potential; however, the resulting
pulse is not a true multidimensional soliton, but rather
a combination of a gap soliton (a weakly localized state
created by the interplay of the repulsive nonlinearity and
periodic potential [2]), which was recently created experi-
mentally in a 1D BEC [22]) in the direction(s) affected by
the OL, and of a Thomas-Fermi state, directly confined
by the external potential in the remaining direction [6].

Thus, no soliton can be supported by a low-
dimensional lattice in the BEC model (GP equation) with
self-repulsion (the latter corresponds to the most common
situation in the experiment [22]). On the other hand, a
new possibility may be considered in terms of nonlinear
optics. Indeed, one may combine three physically relevant
ingredients, viz., (i) an effective periodic potential in the
transverse direction(s), while the medium is uniform in
the propagation direction, (ii) self-defocusing nonlinear-
ity, and (iii) normal GVD. The latter is readily available,
as most optical materials feature normal GVD, in compli-
ance with its name. As concerns the negative cubic nonlin-
earity, it is possible in semiconductor waveguides, or may
be engineered artificially, through the cascading mecha-

nism, in a quadratically nonlinear medium with a proper
longitudinal quasi-phase-matching [23]. Also quite encour-
aging for the study of multidimensional solitons proposed
in this work are recent observations of 1D [24] and 2D [12]
solitons in optically induced waveguide arrays (photonic
lattices) with self-defocusing nonlinearity.

The setting outlined above can be realized in both 2D
and 3D geometry, where the necessary transverse mod-
ulation of the refractive index is provided, respectively,
by the transverse structure in a planar photonic-crystal
waveguide, or in a photonic-crystal fiber. To the best of
our knowledge, in either case the model is a novel one.
A soliton in this medium, if it exists, will be of a mixed
type: in the transverse direction(s), it is, essentially, a 1D
or 2D spatial gap soliton, supported by the combination of
the effective periodic potential and self-defocusing nonlin-
earity, while in the longitudinal direction it is a temporal
soliton of the ordinary type, which is easily sustained by
the joint action of the self-defocusing nonlinearity and nor-
mal GVD. Thus, one may anticipate stable spatiotemporal
solitons, alias “light bullets”, in this model. Due to their
mixed character, they may be called semi-gap solitons.
The issue is of considerable interest in view of the lack of
success in experiments aimed at the creation of “bullets”
in more traditional nonlinear-optical settings [1]. The only
earlier proposed scheme for the stabilization of 2D spa-
tiotemporal optical solitons in periodic structures, that
we are aware of, assumed the use of a planar waveguide
with constant self-focusing nonlinearity and longitudinal
dispersion management [25].

On the other hand, it is necessary to stress that, rigor-
ously speaking, completely localized solutions cannot exist
in the present model: its linear spectrum cannot give rise
to any true bandgap, in which genuine solitons could be
found (see below); instead, one may expect the existence
of quasi-solitons, consisting of a well-localized “body” and
small nonvanishing “tails” attached to it. Nevertheless,
we will produce families of solutions which seem as sta-
ble perfectly localized objects. This is possible because the
“tails” may readily turn out to be so tiny that they remain
completely invisible in numerical results (possibly being
smaller than the error of the numerical scheme), and, of
course, they will be invisible in any real experiment. An
explanation to this feature is provided by the fact that
bandgaps, which “almost exist” in the system’s spectrum,
do not exist in the strict sense because they are covered
by linear modes with very large wavenumbers. As shown
in reference [26], in this case the amplitude of the above-
mentioned tails (which are composed of the linear modes
with very large wavenumbers) is exponentially small. In
fact, families of stable “practically existing” solitons in a
second-harmonic-generating system with opposite signs of
the GVD at the fundamental-frequency and second har-
monics, where solitons cannot exist in the rigorous math-
ematical sense, were explicitly found in that system, in
both [26] multi- and [27] one-dimensional settings. Implic-
itly (without discussion of this issue), “practically exist-
ing” solitons (although, in this case, they were unstable
against small perturbations) were also found in a recent
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work [28], which was dealing with a 2D model of a pla-
nar nonlinear waveguide with the cubic nonlinearity, that
features a Bragg grating in the longitudinal direction, and
is uniform along the transverse coordinate. In the latter
model, true solitons cannot exist, as the spectrum of the
system does not support a full bandgap.

The objective of the present paper is to explore 2D
and 3D spatiotemporal solitons (which may be, strictly
speaking, “quasi-solitons”, in the above sense, but feature
completely localized shapes) and their stability in the pro-
posed medium. In Section 2 we fix the mathematical form
of the 2D version of the model, analyze its spectrum, and
apply the VA to the study of solitons. In Section 3, direct
numerical results demonstrating the existence of very ro-
bust 2D solitons, and their delocalization when the lattice
strength ε becomes too small, are reported (the compar-
ison with the VA prediction shows that the VA provides
for a crude approximation in the present model). In Sec-
tion 4, we additionally consider the effect of variation of
the nonlinearity coefficient along the propagation distance
on 2D solitons. Finally, numerical results for 3D solitons
are collected in Section 5, and the paper is concluded by
Section 6.

2 Formulation and variational analysis
of the two-dimensional model

The model of a planar waveguide corresponding to the
outline given above is based on the following variant of
the 2D NLS equation for the local amplitude u(z, x, t) of
the electromagnetic field:

iuz − 1
2
utt +

1
2
uxx + ε cos(2x)u − |u|2u = 0, (2)

where z is the propagation distance, x is the transverse
coordinate, and t is the reduced time, defined the same
way as in fiber optics. The signs in front of the GVD (utt)
and cubic terms correspond, as said above, to the normal
GVD and self-defocusing nonlinearity, ε is the amplitude
of the transverse modulation of the refractive index (which
is assumed sinusoidal, but the results will be nearly the
same for more realistic forms of the modulation which
correspond to the actual photonic-crystal structure), and
the period of the modulation is scaled to be π. Dynamical
invariants of equation (2) are the norm of the solution (in
optics, it is the total energy),

N ≡
∫ +∞

−∞
dx

∫ +∞

−∞
dt|u(z, x, t)|2, (3)

together with the longitudinal momentum and Hamilto-
nian,

P = i

∫ +∞

−∞
dx

∫ +∞

−∞
dt u∗

t u, (4)

H =
∫ +∞

−∞
dx

∫ +∞

−∞
dt

[
1
2
|ux|2 − 1

2
|ut|2

+
1
2
|u|4 − ε cos(2x)|u|2

]
. (5)

To find the linear spectrum of the model, one looks for
solutions to the linearized version of equation (2) as

u(z, t, x) = exp (ikz − iωt)FE(x), (6)

where k is a real propagation constant, ω is an arbitrary
real eigenvalue,

E ≡ ω2 − 2k, (7)

and FE(x) is a solution of the Mathieu equation,

F ′′ + 2ε cos (2x)F + EF = 0, (8)

corresponding to the eigenvalue E. It is commonly known
that the Mathieu equation gives rise to bandgaps in its
own spectrum, i.e., to forbidden intervals of the values
of E, within which no regular quasi-periodic solutions of
equation (8) can be found. However, since all large values
of E (E � ε) belong to the allowed band, where such
solutions exist, it is obvious that no value of k may fall
in a forbidden bandgap. Indeed, using equation (7), one
can construct any real value of the propagation constant
as k =

(
ω2 − E

)
/2, taking very large E and, accordingly,

very large ω.
On the other hand, the same consideration suggests

that, in some cases, the necessary values of E and ω may
be very large indeed. It was shown, in a general form,
in reference [26] that short-period waves corresponding
to such large parameters, which build up into a possible
“tail” attached to the soliton’s “body” (that makes it a
quasi-soliton), will have an exponentially small amplitude,
rendering the tail totally negligible (in particular, it may
be completely invisible in numerical solutions). Therefore,
it makes sense to look for “practically existing” solitons
in the present model.

We start searching for stationary solutions of the
“mixed” type, which, as explained above, are expected to
feature a gap-soliton (weakly localized) shape along x and
strong ordinary localization in t, by adopting the following
variational ansatz,

u(z, x, t) = Aeikz
[
x−1 sin(ax)

]
sech(αt), (9)

where a and α are, respectively, the transverse and lon-
gitudinal inverse widths of the soliton, and A is its am-
plitude. Using the obvious Lagrangian representation of
equation (2) and well-known VA formalism [15], one can
readily derive the following equations for the parameters
of the ansatz,

a =
(

3ε

1 + (N/3π)2

)1/3

, (10)

α =
aN

3π
, A =

N√
6π

, k = ε− ε2/3

2 (27π2)1/3

27π2 + 5N2

(9π2 + 5N2)2/3
,

(11)
where N is the norm defined by equation (3). It follows
from these equations that the condition dk/dN < 0, i.e.,
the necessary stability condition, according to the above-
mentioned VK criterion [16], always holds, as shown in
Figure 1.
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Fig. 1. The propagation constant vs. norm for the 2D solitons,
as predicted by the variational approximation, equation (11),
for different values of the strength of the periodic potential ε.
The negative slope, dk/dN < 0, implies stability of the solitons
according to the Vakhitov-Kolokolov criterion.

The stability of the soliton families, predicted by the
VK criterion as per Figure 1, is, generally, corroborated
by direct numerical simulations, see the next section (with
a caveat that the VA predicts the shape of the solitons
in only a qualitatively correct form, as explained below).
However, it should also be mentioned that the applicabil-
ity of the VK criterion to gap solitons in lattice models
has never been proven, therefore one should apply this
method with due care. In particular, it is known that the
gap solitons may be unstable in some cases when they are
expected to be VK-stable [30], which is not very surpris-
ing, as the VK criterion ignores complex stability eigen-
values, that may give rise to oscillatory instabilities. More
perplexing is the fact that some gap-soliton families in
a lattice model with the cubic-quintic nonlinearity, that
are formally predicted to be VK-unstable, are in reality
completely stable [31].

To complete the discussion of the VA, it is necessary
to notice that ansatz (9) is irrelevant if it predicts a � 1,
as it would mean that the soliton is very broad in the x-
direction, and it does not feel the underlying lattice struc-
ture, cos(2x) in equation (2). We therefore limit the appli-
cability of the VA by a (roughly defined) condition, a > 1.
According to equation (10), this implies that the potential
must be strong enough,

ε >
1
3

(
1 +

N2

9π2

)
. (12)

3 Numerical results for two-dimensional
solitons

Direct simulations of equation (2) (propagation in z)
started with an initial localized waveform, which we took
as ansatz (9) with the parameters predicted by equa-
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Fig. 2. Cross-sections of a typical established 2D soliton of the
semi-gap type. It has self-trapped from the initial configuration
(13) with A = 1 and a = 1. The solid and dashed lines repre-
sent, respectively, the sections along the transverse directions
x at t = 0, and temporal direction t at x = 0. The shapes of
the cross-sections are displayed on the logarithmic scale, to il-
lustrate the fundamental observation of the practical vanishing
of the tails attached to the soliton’s “body”.

tion (11), or just a Gaussian with rather arbitrary pa-
rameters — for instance,

u(x, t, 0) = A exp
[
−a

2
(
x2 + t2

)]
. (13)

It was observed that the initial waveform undergoes in-
tense evolution, shedding off some radiation waves that
were absorbed at edges of the integration domain. The
domain was large enough — in most cases, (−8π, +8π) in
both directions (x and t) — so that the solitons, which
are typically well localized within a region (−5, +5), see
Figures 2, 3, 7, and 9 below, are not affected by the ab-
sorbers.

The evolution of the pulse ends with the establish-
ment of a 2D stationary soliton, without any visible tails,
as shown on the logarithmic scale in Figure 2. It is relevant
to mention that, as seen from Figures 2 and 3, the charac-
teristic sizes of the soliton in the x and t directions are on
the same order of magnitude, hence the values of the GVD
coefficient and its effective lattice-diffraction counterpart
are, roughly, equal.

In fact, the solitons self-trap even from the initial con-
figurations that are quite different from their final shape,
which attests to strong robustness of the solitons. The soli-
ton’s stability was then additionally tested against small
random perturbations, by simulating the evolution of the
initial configuration U(x, t) = U0(x, t)[1+σup(x, t)], where
U0(x, t) is the numerically found soliton, σ is a small am-
plitude of the perturbation, and up(x, t) is a random func-
tion. An example of a stable localized state self-trapped
from the initial Gaussian (13) with A = 1 and a = 1, with
the norm N0 = π, is displayed in Figure 3.

It should be said that direct comparison of the VA
predictions with the numerical results shows only a qual-
itative agreement: for example, the VA predicts, with the
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Fig. 3. A stable localized solution of equation (2) with ε = 2.0,
produced from the initial Gaussian pulse (13) with the initial
norm N0 = π. The amplitude, inverse width along the tempo-
ral direction, and norm of this localized state are A = 0.74,
α = 0.56, and N = 2.29, respectively. Note that 27% of the
initial norm was lost with emitted radiation in the course of
the evolution. Notice that the soliton features no extended tail.

same value of the norm, a soliton whose width in the tem-
poral direction exceeds the actual width of the soliton in
Figure 3, by factor in excess of 2, and, accordingly, the
amplitude of the numerically found soliton significantly
exceeds that predicted by the VA. Therefore, the VA pro-
vides for only a crude approximation in this model; nev-
ertheless, its qualitative predictions, such as the stability
of the solitons predicted by the VK criterion, are correct.
In this connection, it is relevant to mention that no good
version of VA has been thus far proposed for gap soli-
tons (this technical issue was considered, in some detail,
in Ref. [29]), and the solitons in the present model are still
more complex objects.

Further numerical analysis of the 2D model has demon-
strated that, following the known pattern of the delocal-
ization transition of 2D solitons in lattice potentials [19],
the soliton solutions cease to exist when the strength of the
periodic potential ε or the norm of the localized state N
fall below some critical values. In this case, the local-
ized waveform undergoes disintegration, transforming into
a quasi-linear nonstationary extended state. This state
keeps expanding until it eventually hits edge absorbers,
thus completely disappearing. Naturally, the expansion
occurs faster in the temporal (alias longitudinal) direc-
tion, where it is not impeded by any potential structure.
Figure 4 illustrates the disintegration of the localized state
(the one from Fig. 3), following gradual decrease of ε along
the propagation direction. It is relevant to stress that the
disintegration of the soliton at small ε is inevitable, as
equation (2) with ε = 0 has no 2D soliton solution, un-
like the Townes soliton, which would be a solution for the
equation with ε = 0 and reverse sign in front of the uxx

term.
Detecting the delocalization transition of the semi-gap

solitons at critical values of the nonlinear coefficient (or
rescaled norm) and/or the strength of the periodic poten-
tial can be used to locate the lower border of their exis-
tence region in the parameter space (N, ε). Actually, the
transition from the localized state to the extended one is
quite steep (see Fig. 5), which allows quite accurate deter-
mination of the critical values of the parameters. However,
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Fig. 4. Dynamical disintegration of the localized state shown
in Figure 3 as a result of a gradual decrease of the strength
of the periodic potential along the propagation distance, so as
ε(z) = ε0(1 − z/zend), with ε0 = 2 and zend = 1800. Cross-
sections of the wave profile are displayed: (a) along the trans-
verse coordinate x; (b) in the temporal direction t. The delo-
calization occurs around z = 650, at ε close to a critical value,
εcr � 1.3.
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Fig. 5. The amplitude of the 2D semi-gap soliton abruptly
decays at the point of the delocalization transition, which was
displayed in Figure 4. The present figure illustrates the steep-
ness of the transition at ε � 1.3, with the slowly decreasing
strength of the periodic potential, starting from ε = 2.0.

delineating the full existence region of the semi-gap soli-
tons is a harder problem, as the limiting effect at large
values of the norm, which determines the upper border,
is splitting of the soliton (see below), rather than collapse
(singularity formation) in the case of lattice gap solitons
with the self-focusing nonlinearity [3]. Precise shapes of
the existence and stability domains of lattice gap solitons
can be rather complex, as shown in reference [9] for the
case of saturable nonlinearity.
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Fig. 6. The evolution of the norm (N), amplitude (A), and
inverse temporal width (α) resulting from the slow linear in-
crease of the nonlinear coefficient χ in equation (2), χ(z) =
1 + γz/zend, with γ = 9 and 0 < z < zend = 2000. Note signif-
icant decrease of the norm N , opposed by little variation of A
and α. The initial localized state is the same as in Figure 3.

Accurate determination of the full stability borders for
the solitons in the present model, going beyond the use
of the VK criterion and collection of typical examples of
direct simulations, will be a subject of separate work.

Finally, equation (2) features obvious Galilean invari-
ance in the longitudinal (t) direction, which makes it pos-
sible to generate a boosted soliton uc, with an arbitrary
inverse-velocity shift c, from a given soliton u, as

uc(z, t) = u(z, t− cz)e−i(c2/2)z−ict.

The use of such two pulses with the c1 �= c2 makes it
possible to study collisions between the moving solitons,
which, however, should be a subject of a separate work.

4 Effects of nonlinearity modulation

As the nonlinearity is a key factor necessary for the ex-
istence of solitons, in this section we address response of
the 2D solitons to variation of the nonlinearity strength
along the propagation coordinate, z. In nonlinear op-
tics, a variable nonlinearity coefficient can be created by
dint of different physical mechanisms, such as variation of
a dopant concentration, optically controlled photorefrac-
tion, or simply by using a variable thickness of the planar
waveguide.

Thus, we replace equation (2) by its variant which in-
cludes a variable nonlinear coefficient χ(z),

iuz − 1
2
utt +

1
2
uxx + ε cos(2x)u − χ(z)|u|2u = 0. (14)

Then, we follow the transformation of the soliton with
slow increase or decrease of χ(z). Figure 6 displays the
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Fig. 7. The final shape of the soliton from Figure 3, established
after by slow increase of the nonlinearity by a factor of 10, as
illustrated in the previous figure. Note that an extended tail
attached to the soliton does not appear in this case either.

evolution of the soliton’s parameters as the nonlinearity
coefficient gradually increases ten-fold.

In this case, Figure 7 shows that the final waveform,
corresponding to χ = 10, has not changed notably com-
pared to initial one (see Fig. 3), which implies that the
increase of the nonlinearity is countered by the loss of
the norm. The excess norm is shed off with linear waves
which are absorbed on the domain boundaries. It appears
that the shape of the localized wave, being weakly sensi-
tive to the value of the norm (hence, to the strength of
the nonlinearity too), is actually fixed by the strength ε
of the periodic potential. This shape-invariance property
of the mixed-type solitons is very different from what is
manifested by both ordinary solitons and gap solitons per
se, whose shapes are particularly sensitive to the strength
of the nonlinearity, at a fixed amplitude of the periodic
potential.

If the coefficient of nonlinearity slowly decreases, as
χ(z) = 1 − z/zend with zend = 2000, the disintegration
of the localized state is observed when falls to the level
of χ 	 0.5, resembling the picture in Figure 4. Thus, we
conclude that the strengths of both the periodic potential
and nonlinearity must exceed some critical values in order
to sustain the localized states. In this respect, the multidi-
mensional semi-gap solitons resemble regular gap solitons
in lattice potentials [17,19].

One of characteristic features of ordinary solitons in
1D nonintegrable systems is splitting of the soliton when
the GVD coefficient [32] or nonlinearity [33] is abruptly
changed. In the present model, one can observe a simi-
lar effect for 2D solitons. Figure 8 displays an example of
the splitting of a soliton into two fragments, which then
separate along the free direction t, after the nonlinearity
coefficient was suddenly increased by an order of magni-
tude.

5 The three-dimensional case

The 3D version of equation (2) has a straightforward form,

iuz−1
2
utt+

1
2
(uxx+uyy)+ε[cos(2x)+cos(2y)]u−|u|2u = 0.

(15)
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Fig. 8. Splitting of the soliton from Figure 2 along the free
direction t, following the rapid increase of the nonlinear co-
efficient by a factor of 10, which is performed by setting
χ(z) = 1 + γ tanh(4z/zend) in equation (14), with γ = 9 and
zend = 10.

Similarly to the 2D case, stationary solutions to equa-
tion (15) can be numerically found by using a Gaussian
pulse as the initial condition and propagating in z. Sta-
bility of the 3D solitons was verified by simulating the
evolution of a soliton with a random perturbation added
to it. As well as in the 2D case, the simulations were per-
formed with the absorbers placed at borders of the inte-
gration domain (under the condition that the length of the
domain was much larger than a characteristic size of the
soliton). As a result, it was concluded that robust 3D soli-
tons exist as generic solutions, without any visible tails
attached to them. An example of a stationary 3D soliton,
which was found to be quite robust in stability simula-
tions, is displayed in Figure 9. In particular, Figure 9b
clearly demonstrates that, as well as in the 2D case, the
soliton has, roughly, equal sizes in the spatial and tem-
poral directions, i.e., the GVD and diffraction modified
by the periodic potential play equally important roles in
supporting the solitons.

Besides the fundamental 3D pulses, such as the one
displayed in Figure 9, the model can also support 3D soli-
tons with embedded vorticity. Analogy with known results
for gap-soliton vortices in the 2D lattice models [34] sug-
gests that the vortex solitons too may easily be stable
in the present model. However, detailed investigation of
the vortex solutions, as well as collecting systematic data
about the family of the fundamental 3D solitons, requires
numerous runs of lengthy simulations of the 3D equation,
which is beyond the scope of the present paper.

6 Conclusion

In this work, we have proposed a new type of the multi-
dimensional model in nonlinear optics. It combines self-
defocusing nonlinearity and normal group-velocity dis-
persion with periodic modulation of the local refractive
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Fig. 9. A three-dimensional stationary soliton solution to
equation (15) with ε = 2.0 is shown through its two cross-
sections: (a) perpendicular to the free direction, in the t = 0
plane, and (b) parallel to the free direction, in the y = 0 plane.
The soliton was obtained by direct propagation in z of an ini-
tial Gaussian with the norm N0 = 2π. The norm of the estab-
lished soliton is N = 4.16, i.e., a third of the initial norm was
lost in the course of the adjustment of the initial pulse to the
stationary shape of the 3D soliton.

index in the one or two transverse directions (in the 2D
and 3D models, respectively). Strictly speaking, multidi-
mensional (spatiotemporal) solitons cannot exist in media
of this type, as the system’s spectrum contains no true
bandgap. Nevertheless, solitons which seem as completely
localized ones are predicted by the variational approxima-
tion, and found in direct simulations. These solitons are
solutions of a mixed type, as in the free (longitudinal, alias
temporal) direction they are regular solitons, while in the
transverse direction(s) they are objects of the gap-soliton
type (hence the solution as a whole was called a semi-gap
soliton). The existence of the solitons requires that both
the norm of the solution (in other words, the nonlinearity
strength χ) and the strength ε of the spatially periodic
transverse potential exceed certain minimum values, oth-
erwise the pulses decay into linear waves. Actually, the
solitons are much more sensitive to ε than to χ.

The results reported in this paper call for further work,
that should be aimed at accurate identification of bor-
ders of the solitons’ stability regions, especially in the 3D
model (which requires running very massive simulations),
investigation of collisions between solitons, that may move
freely in the longitudinal direction, and the study of vortex
solitons in the 3D case.
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